
Neuropsychologia 147 (2020) 107584

Available online 9 August 2020
0028-3932/© 2020 Elsevier Ltd. All rights reserved.

Neural representations of social valence bias economic 
interpersonal choices 

Paloma Díaz-Gutiérrez a,*, Juan E. Arco a, Sonia Alguacil b, Carlos González-García c, María Ruz a 
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A B S T R A C T   

Prior personal information is highly relevant during social interactions. Such knowledge aids in the prediction of 
others, and it affects choices even when it is unrelated to actual behaviour. In this investigation, we aimed to 
study the neural representation of positive and negative personal expectations, how these impact subsequent 
choices, and the effect of mismatches between expectations and encountered behaviour. We employed functional 
Magnetic Resonance Imaging in combination with a version of the Ultimatum Game (UG) where participants 
were provided with information about their partners’ moral traits previous to receiving their fair or unfair offers. 
Univariate and multivariate analyses revealed the implication of the supplementary motor area (SMA) and 
inferior frontal gyrus (IFG) in the representation of expectations about the partners in the game. Further, these 
regions also represented the valence of these expectations, together with the ventromedial prefrontal cortex 
(vmPFC). Importantly, the performance of multivariate classifiers in these clusters correlated with a behavioural 
choice bias to accept more offers following positive descriptions, highlighting the impact of the valence of the 
expectations on participants’ economic decisions. Altogether, our results suggest that expectations based on 
social information guide future interpersonal decisions and that the neural representation of such expectations in 
the vmPFC is related to their influence on behaviour.   

1. Introduction 

Decision-making is a crucial constituent of our daily life. To make 
choices that best fit our goals, we must rapidly weight different sources 
of information in an efficient manner. An elegant approach to under-
stand how we perform such weighting comes from the framework of 
predictive coding (Friston, 2005), where optimal decision-making 
combines sensory input (evidence) with predictions (priors; Schwarz 
et al., 2016; Summerfield and De Lange, 2014). The role of these pre-
dictions has been thoroughly examined in non-social decisions, where 
several studies have shown pre-activation of target-related brain areas 
during the expectation period, prior to target onset (e.g., Esterman and 
Yantis, 2010; González-García et al., 2016; Puri et al., 2009). However, a 
large part of decisions takes place in social contexts, where we 
constantly engage in interactions with others. Still, the role of expecta-
tions in such scenarios remains unclear. 

When making decisions in complex scenarios, people tend to choose 
more often and faster the options that match their personal preferences 

(with higher personal value) even when the objective task value of the 
different alternatives is similar (Lopez-Persem et al., 2016). This leads to 
suboptimal decisions that do not properly consider potential future 
outcomes (Fleming et al., 2010). This is also the case for interpersonal 
decisions, which can be biased by several sources of information at 
different stages of processing (Díaz-Gutiérrez et al., 2017). For instance, 
in the Ultimatum Game (UG; Güth et al., 1982; Moser et al., 2014), 
participants receive monetary offers from game partners and decide 
whether to accept them or not. Acceptance leads to both parts earning 
their split; whereas no gains are earned after a rejection. Here, “rational” 
decisions from an economic point of view should be of acceptance, since 
you can only earn money. However, choices are strongly influenced by 
the fairness of the offer (how balanced both halves of the split are). 
People show high rejection rates towards unfair offers (Sanfey et al., 
2003), which has been explained in terms of inequity-aversion ten-
dencies (Fehr and Camerer, 2007) and punishment (Brañas-Garza et al., 
2014). Others have emphasized the importance of social norms, and 
how these impact the perception of fairness (Chang and Sanfey, 2013). 
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In these scenarios, the mechanisms underlying the processing of offers 
depending on their fairness and participants’ subsequent responses have 
been extensively studied. Here the role of the anterior cingulate cortex 
(ACC) and supplementary motor area (SMA) stands out, concerning both 
fairness and people’s decisions (for a meta-analysis, see Gabay et al., 
2014). Authors such as Sanfey et al. (2003) have shown the involvement 
of the anterior insula (aI) in fairness processing. Also, Corradi--
Dell’Acqua, Civai, Rumiati and Fink (2013) differentiated its role from 
the one of the medial prefrontal cortex (mPFC), which has been linked to 
emotional self-related responses during interpersonal bargaining 
situations. 

Despite the extensive and diverse studies in interpersonal games, it is 
largely unknown how the brain represents socially relevant priors in 
these scenarios. Recent proposals have tried to link predictive coding 
and the representation of social traits in relation to social expectations 
(e.g., Tamir and Thornton, 2018). Several studies have described a set of 
regions underlying the representation of knowledge that guides social 
predictions in a broad context (termed Social Cognition Network; Frith 
and Frith, 2008), including personal traits, stereotyping, semantic 
knowledge about people or inferences about others and their mental 
states (Tamir and Thornton, 2018; Tamir et al., 2016). This network 
includes the temporoparietal junction (TPJ), superior temporal sulcus 
(STS), precuneus (PC), anterior temporal lobes (ATL), amygdala and the 
mPFC (Contreras et al., 2013; Frith, 2007; Frith and Frith, 2001; 
Mitchell et al., 2008). These regions underlie processes such as Theory of 
Mind (ToM; Saxe and Kanwisher, 2003). Similarly, in decisions in social 
contexts, the mPFC has been related to expectations about others’ 
behaviour (Corradi-Dell’Acqua, Turri, Kaufmann, Clément and 
Schwartz, 2015). Importantly, prior expectations during social decisions 
also influence behaviour when they are not followed by their usual 
consequences. In this line, different studies (Fouragnan et al., 2013; Ruz 
and Tudela, 2011) have observed increased activation in brain areas 
associated with cognitive control, such as the ACC and the aI, when 
expectations about partners do not match their subsequent behaviour. 
Similarly, Chang and Sanfey (2013) found a relationship between the 
deviation from the expectations and increased activation in the aI, ACC 
and SMA. Specifically, in the UG, an increase of activation in the 
dorsolateral PFC (dlPFC) and aI has been related to participants’ reac-
tion to unfair offers (Knoch et al., 2006; Sanfey et al., 2003), which has 
also been interpreted as a violation of what we expect from others. 

In addition to this, social expectations can also be based on the 
personal traits of others, which are an essential component of social 
representations (Tamir and Thornton, 2018). The priors that they 
generate relate to stereotypes and interact with perceptual processes 
(Stolier and Freeman, 2016, 2017). These personality traits can be 
decomposed in three different dimensions: rationality, social impact 
and, crucially to our investigation, valence (positive vs. negative; Tamir 
and Thornton, 2018; Thornton and Mitchell, 2017). The representation 
of the character of others in association with positive or negative in-
formation is an important source of bias in interpersonal decisions 
(Díaz-Gutiérrez et al., 2017). For instance, Delgado et al. (2005), found 
that participants trusted partners associated with positive moral traits 
more than those having negative ones. Furthermore, a variety of studies 
employing the UG paradigm have observed that participants tend to 
accept more offers from partners associated with positive descriptions, 
compared to negative ones (Gaertig et al., 2012). This tendency is 
steeper when participants navigate uncertain scenarios (Ruz et al., 
2011). Moreover, in this context, the use of high-density electroen-
cephalography (EEG) has shown that negative descriptions of partners 
lead to a higher amplitude of the medial frontal negativity (MFN; 
associated with the evaluation of outcomes, Hajcak et al., 2006; Yeung 
and Sanfey, 2004) when decisions are made (Moser et al., 2014). These 
data indicate how, regardless of fairness, people evaluate offers as more 
negative when they come from a disagreeable partner. Such knowledge 
about personal traits has been suggested to be integrated by the mPFC 
(Van Overwalle, 2009). For example, this area increases its coupling 

with other regions responding to specific traits (Hassabis et al., 2014), 
and shows heightened activation when a partner’s behaviour violates 
previous trait implications (Ma et al., 2012). 

Nonetheless, despite the key relevance of valence in psychological 
theories and its marked impact on social decision-making, it is not well 
understood how valence is represented at the neural level and its effect 
on subsequent choices (Barrett and Bliss-Moreau, 2009). Results of a 
recent meta-analysis (Lindquist et al., 2015) provide evidence of a 
general recruitment of a set of regions for valenced versus neutral in-
formation, including the bilateral aI, the ventral and dorsal portions of 
the mPFC (vm/dmPFC), the dorsal ACC, SMA, and lateral PFC. Lindquist 
et al. (2015) found that the vmPFC/ACC was more frequently activated 
in positive vs. negative than in positive vs. neutral contrasts, which 
could indicate that these regions represent valence information along a 
single bipolar dimension. 

Taking all this into account, in the current functional Magnetic 
Resonance Imaging (fMRI) study, we employed a modified version of the 
UG (Gaertig et al., 2012) to investigate how socially relevant priors 
represented by the valence of personal descriptions of partners bias 
interpersonal economic choices. First, we aimed to study which neural 
regions code for the generation and maintenance of positive and nega-
tive expectations about other people. In a second step, we assessed how 
these expectations bias decisions. We expected to find specific neural 
representations underlying the expectations about the partners, with 
different patterns depending on the valence of these predictions (Lind-
quist et al., 2015). Specifically, we hypothesized that these patterns 
would be represented in regions related to social cognition and priors in 
decision-making (Contreras et al., 2012; González-García et al., 2016; 
Saxe and Kanwisher, 2003). Last, we intended to ascertain which neural 
mechanisms were engaged by a mismatch between personal expecta-
tions and the partners’ behaviour. We predicted that control-related 
areas would be engaged when the valenced description was not 
congruent with the subsequent partner’s behaviour. 

2. Methods 

2.1. Participants 

Twenty-four volunteers were recruited from the University of 
Granada (M = 21.08, SD = 2.92, 12 men), matching the sample size 
employed in Moser et al. (2014), who implemented the same version of 
the task for electroencephalography (EEG). This sample is similar to 
previous fMRI studies using the UG (Chang and Sanfey, 2013; Grecucci 
et al., 2013). All participants were right-handed with normal or cor-
rected vision and received economic remuneration (20–25 Euros, pro-
portionally to their acceptance rates). Participants signed a consent form 
approved by the Ethics Committee of the University of Granada. 

2.2. Apparatus and stimuli 

We employed 16 adjectives used in previous studies (Gaertig et al., 
2012; Moser et al., 2014; Ruz et al., 2011; see Table 1) as trait-valenced 
descriptions of the game proposers, extracted from the Spanish 

Table 1 
List of adjectives employed in the task (Gaertig et al., 
2012).  

Positive words Negative words 

Friend Criminal 
Generous Cruel 
Honest Disloyal 
Honourable False 
Humble Guilty 
Kind Hostile 
Loyal Selfish 
Warm Traitor  
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translation of the Affective Norms for English Words database (ANEW; 
Redondo et al., 2007). Half of the adjectives were positive (M = 7.65 
valence, SD = 0.43), and the other half were negative (M = 2.3 valence, 
SD = 0.67). All words were matched in arousal (M = 5.69, SD = 0.76), 
number of letters (M = 6.19, SD = 1.42) and frequency of use (M =
20.19, SD = 18.47). In addition, we employed numbers from 1 to 9 (two 
in each trial) in black colour to represent different monetary offers. 
Stimuli were controlled and presented by E-Prime software (Schneider 
et al., 2002). Inside the scanner, the task was projected on a screen 
visible to participants through a set of mirrors placed on the radio-
frequency coil. 

2.3. Task and procedure 

To add credibility to the interpersonal game setting, participants 
were told that they were about to receive offers made by real partici-
pants in a study of a previous collaboration with a foreign university. 
Furthermore, to engage participants in the game as a real social sce-
nario, prior to the scanner they performed two tasks in which they had to 
make economic offers that would be used for other participants in future 
studies. In one of the tasks, participants acted as proposers, filling a 
questionnaire where they had to make offers for 16 different unknown 
partners, who would be involved in future experimental games. Here, 
they had to split 10 Euros into two parts, one for themselves and the 
other for their partners. Additionally, in a second task, they played a 
short version of the Dictator Game (Kahneman et al., 1986), where they 
decided how to divide another 10 Euros between themselves and an 
anonymous partner, who would have a merely passive role concerning 
the output of the offer. Moreover, participants were told that the offers 
that they were about to see in the scanner were each provided by a 
different partner who previously performed the same tasks as they did 
before the scanner, and therefore, the offers were real examples of other 
participants’ responses when acting as proposers. Participants were 
informed that each offer would be preceded by a word that had been 
obtained as an output from a series of personality and social question-
naires filled by their partners and, therefore, that these adjectives 
described them in some way (see Table 1). Choices made by participants 
had an influence in their final payment, as it actually varied (20–25 
Euros) according to their choices during the game in the scanner. In a 
post-scanning informal debriefing session, none of the participants re-
ported suspicions regarding the background story of this procedure, 
which has also been used successfully in other settings (e.g. Correa et al., 
2020; Correa et al., 2017). 

In the scanner, participants played the role of the responder in a 
modified UG (e.g., Gaertig et al., 2012), deciding whether to accept or 
reject monetary offers made by different partners (proposers). If they 
accepted the offer, both parts earned their respective splits, whereas if 
they rejected it, neither of them earned money from that exchange. 
Offers consisted of splits of 10 Euros, which could be fair (5/5, 4/6) or 
unfair (3/7, 2/8, 1/9). The number presented at the left on the screen 
was always the amount of money given to the participant, and the one 
on the right side was the one proposed by the partners for themselves. 

Personal information about the partners was included as adjectives 
with different valence. A third of these descriptions was positive, 
another third negative, and the last third was neutral, represented by 
text indicating the absence of information about that partner ("no test"). 
The valence of the adjectives was orthogonal to the fair-unfair nature of 
the offers. The order of the offers and adjectives was randomized, and 
each type of personal information (positive, negative, no information) 
preceded each offer equally within and across runs. Decision-response 
associations were counterbalanced between participants. 

Participants performed a total of 192 trials, arranged in 8 runs (24 
trials per run). In each run, a start cue of 6 s was followed by 24 trials. 
Each trial (see Fig. 1) started with an adjective for 1 s (mean = 2.98◦), 
preceding a jittered interval lasting 5.5 s on average (4–7 s, +/0.76◦). 
Then, the offer appeared for 0.5 s (1.87◦), followed by a second jittered 
interval (mean = 5.5 s; 4–7 s, +/0.76◦). Overall, each run lasted 5.1 min 
and the whole task 41 min approximately. 

2.4. Image acquisition and preprocessing 

MRI images were acquired using a Siemens Magnetom TrioTim 3T 
scanner, located at the Mind, Brain and Behavior Research Center in 
Granada. Functional images were obtained with a T2*-weighted echo- 
planar imaging (EPI) sequence, with a TR of 2000 ms. Thirty-two 
descendent slices with a thickness of 3.5 mm (20% gap) were extrac-
ted (TE = 30 ms, flip angle = 80 ◦, voxel size of 3.5 mm3). The sequence 
was divided into 8 runs, consisting of 166 vol each. After the functional 
sessions, a structural image of each participant with a high-resolution 
T1-weighted sequence (TR = 1900 ms; TE = 2.52 ms; flip angle = 9◦, 
voxel size of 1 mm3) was acquired. 

Data were preprocessed with SPM12 software (http://www.fil.ion. 
ucl.ac.uk/spm/software/spm12/). The first three volumes of each run 
were discarded to allow the signal to stabilize. Images were realigned 
and unwarped to correct for head motion, followed by slice-timing 
correction. Afterwards, T1 images were coregistered with the 

Fig. 1. Sequence of events in a trial. The task varied the Valence of the partner’s information (Positive, Negative, No information) and the Fairness of the offer (Fair/ 
Unfair), which were manipulated orthogonally in the design. 
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realigned functional images. Then, functional images were spatially 
normalized according to the standard Montreal Neurological Institute 
(MNI) template and smoothed employing an 8 mm Gaussian kernel. 
Low-frequency artefacts were removed using a 128 high-pass filter. Data 
for multivariate analyses was only head-motion and slice-time corrected 
and coregistered. 

2.5. Univariate analyses 

First-level analyses were conducted for each participant, following a 
General Linear Model in SPM12. We employed an event-related design, 
where activity was modelled using regressors for each valence type of 
adjective and for the offers. The estimated model included three re-
gressors for the Words (positive, negative, no information) and six for 
the Offers (Fair offers_Positive, Fair offers_Negative, Fair offers_Neutral, 
Unfair offers_Positive, Unfair offers_Negative, Unfair offers_Neutral). 
Note that since decisions were made when the offers appeared, and that 
responses (choices) showed a strong dependency on offer fairness, offer 
fairness and decisions cannot be modelled separately. Given our 
research questions, we modelled the offer events considering their 
fairness regardless of participants’ choices. Regressors were convolved 
with a standard hemodynamic response, with adjectives modelled with 
their duration (1 s + jitter), and offers modelled as events with zero 
duration. This temporal difference is accounted by the fact that the 
words describing the partners trigger preparatory processes, which 
extend in time (e.g. Bode and Haynes, 2009; Di Russo et al., 2017; 
González-García et al., 2017; González-García et al., 2016; Sakai, 2008), 
whereas the processing of the offers ends shortly after with the response 
of each trial (see Moser et al., 2014). Importantly, the orthogonal 
manipulation of these variables in the design avoided covariance con-
founds between word cues and target offers. 

At the second level of analysis, t-tests were conducted for compari-
sons of expectations (information about the partner > no information), 
the valence of the information (positive > negative, negative > positive) 
and the fairness of the offer (fair > unfair, unfair > fair). We also carried 
out contrasts for congruence effects between the events, where we had 
congruent (positive descriptions followed by fair offers, negative de-
scriptions followed by unfair offers) and incongruent trials (positive 
descriptions followed by unfair offers, negative descriptions followed by 
fair offers). To control for false positives at the group level, we employed 
permutations tests with statistical non-parametric mapping (SnPM13, 
http://warwick.ac.uk/snpm) and 5000 permutations. We performed 
cluster-wise inference on the resulting voxels with a cluster-forming 
threshold of 0.001, which was later used to obtain significant clusters 
(FWE corrected at p<.05). 

2.6. Multivariate analyses 

We performed MVPA to examine the brain areas representing the 
valence of the expectations, that is, the regions containing information 
about whether the partners were described with positive vs. negative 
adjectives. To this end, we performed a whole-brain searchlight (Krie-
geskorte et al., 2006) on the realigned images (prior to normalization). 
We employed The Decoding Toolbox (TDT; Hebart et al., 2015), to 
create 12-mm radius spheres, where linear support vector machine 
classifiers (C = 1; Pereira et al., 2009) were trained and tested using a 
leave-one-out cross-validation scheme, employing the data from the 8 
scanning runs (training was performed with data from 7 runs and tested 
in the remaining run, in an iterative fashion). We used a Least-Squares 
Separate model (LSS; Turner, 2010) to reduce collinearity between re-
gressors (Abdulrahman and Henson, 2016; Arco et al., 2018). This 
approach fits the standard hemodynamic response to two regressors: one 
for the current event of a trial (positive/negative adjective) and a second 
one for all the remaining events and trials. As in the previous analyses, 
adjective regressors were modelled with their duration (1 s + jitter) and 
offers with zero duration. Consequently, the output of this model was 

one beta image per event (total = 128 images, 64 for each type of ad-
jective, 112 for training and 16 for testing in each iteration). Afterwards, 
at the group level, non-parametrical statistical analyses were performed 
on the resulting accuracy maps following the method proposed by 
Stelzer et al. (2013) for MVPA data. We permuted the labels and trained 
the classifier 100 times for each participant. The resulting maps were 
then normalized to an MNI space. Afterwards, we randomly picked one 
of these maps per each participant and averaged them, obtaining a map 
of group accuracies. This procedure was repeated 50000 times, building 
an empirical chance distribution for each voxel position and selecting 
the 50th greatest value, which corresponds to the threshold that marks 
the statistical significance. Only the voxels that surpassed this were 
considered significant. The resulting map was FWE corrected at 0.05, 
computing previously the cluster size that matched this value from the 
clusters obtained in the empirical distribution. 

Importantly, the valence of the description influenced acceptance 
rates, which could generate potential confounds in the previous 
decoding. The association between hand and decision (left/right, 
acceptance/rejection) was fully counterbalanced across participants, 
but remained constant for each of them. Therefore, the classifier could 
use response information (accept vs. reject) when decoding valence. To 
clarify this issue, we performed a response classification at the offer 
period (following the same procedure as for the valence decoding). 
Then, we ran a conjunction analysis, computing the intersection be-
tween valence and response group maps to examine whether the regions 
containing relevant information about the valence were the same as 
those representing the participants’ decisions (accept vs. reject). More-
over, to test the potential overlap between the neural representations of 
participants’ decisions and the valence of the expectations about the 
partners, we performed a cross-classification analysis (Kaplan et al., 
2015) between these two domains. Following again the same classifi-
cation procedure described above in this section, we trained the classi-
fier with the participants’ responses to the offers (accept vs. reject) and 
tested it on the valence of the partner’s descriptions (positive vs. 
negative). 

2.7. Relationship between decoding accuracy and choices 

To examine the extent to which the fidelity of representation of 
(positive vs. negative) personal priors relates to the decisions made by 
participants, we performed a correlation analysis between an individual 
bias index and mean decoding accuracy values from each significant 
cluster in the MVPA described above. To obtain this behavioural index, 
for each participant we subtracted the average acceptance rate following 
negative descriptions from the average acceptance rate after positive 
descriptions (regardless of the nature of the offer). For each subject, we 
performed a one-tailed (right) Spearman’s correlation between the 
behavioural index and the decoding accuracy from each significant 
cluster (Bonferroni-corrected for multiple comparisons). To further 
ascertain that participants’ motor responses were not contaminating this 
link between valence representation and interpersonal choices, we ran 
an additional correlation analysis following the same approach, this 
time to examine the link between valence’ decoding results and the 
response made by participants (acceptance or rejection of the offer). 
Therefore, for each participant, we calculated their average acceptance 
rate in general, regardless of the valence of the expectation and the 
fairness of the offers. 

3. Results 

3.1. Behavioural data 

Acceptance rates (AR) and reaction times (RTs) were analysed in a 
Repeated Measures ANOVA, with Offers (fair/unfair) and Valence of the 
descriptions (positive, negative, neutral) as factors. The Greenhouse- 
Geisser correction was applied whenever the sphericity assumption 
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was violated. 

3.1.1. Acceptance rates 
Participants responded on 100% of the trials. Data showed (see 

Fig. 2) a main effect of Offer F1,23 = 74.50, p < .001, ηp
2 = .764, where 

fair offers were accepted more often (M = 84.09%; SD = 22.10) than 
unfair ones (M = 24.18%; SD = 24.10). Valence was also significant, 
F2,22 = 13.735, p = .001, ηp

2 = .374. Participants accepted more offers 
when they were preceded by a positive description of the partner (M =
59.39%; SD = 23.09), than when there was no information (M =
56.31%; SD = 21.89) or when this was negative (M = 46.70%; SD =
24.33). Planned comparisons revealed that these differences were sig-
nificant between all pairs (all ps<.05). Finally, the Offer × Valence 
interaction was also significant, F2,22 = 4.262, p = .033, ηp

2 = .156. 
Planned comparisons showed that for fair offers, there were differences 
between all comparisons (ps = .002) except between positive and 
neutral information (p = .399), whereas for unfair offers, there was no 
difference in acceptance rates between negative and neutral information 
(p = .074) but there was for the rest of the pairwise comparisons: ps <
.01) 

3.1.2. Reaction times 
Results showed (see Fig. 2) a main effect of Offer F1,23 = 22.489, p <

.001, ηp
2 = .494, where participants took longer to respond to unfair (M 

= 1023.53 ms; SD = 373.10 ms) than to fair offers (M = 925.62 ms; SD 
= 309.57 ms). Neither Valence, F2,22 = 1.05, p = .341, or its interaction 
with Fairness, F2,22 = 1.956, p = .168 were significant. In addition, to 
measure the influence of expectations on participant’s responses (see 
Ruz et al., 2011), we ran an ANOVA where we included the valence of 
the descriptions and the decision (accept, reject) made to the offers. 
Here, we did not find any effect of Valence, F<1, but we found signifi-
cant effects of Decision, F1,23 = 5.519, p = .028, ηp

2 = .194, since par-
ticipants were faster to accept (M = 951.37 ms; SD = 356.01 ms) than to 
reject the offers (M = 988.97 ms; SD = 316.91 ms). Interestingly, data 
showed an interaction Valence X Decision, F2,22 = 4.23, p = .025, ηp

2 =

.155, replicating previous findings (Gaertig et al., 2012; Ruz et al., 
2011). Planned comparisons indicated that these differences in RT for 
responses took place only after positive, F1,23 = 13.997, p = .001, ηp

2 =

.378 (Accept: M = 927.60 ms, SD = 297.37 ms; Reject: M = 993.91 ms, 
SD = 335.52 ms), and neutral descriptions, F1,23 = 4.504, p = .045, ηp

2 =

.165 (Accept: M = 955.8 ms, SD = 304.96 ms; Reject: M = 987.80 ms, 
SD = 328.48 ms), but not for negative descriptions, F<1. 

3.2. Neuroimaging data 

3.2.1. Univariate results 

3.2.1.1. Expectations. During the presentation of the description and 
the time interval that followed, that is, when participants had personal 
information to generate expectations [(Positive & Negative adjectives) 
> No Information], we observed a cluster of activity (see Fig. 3a) in the 
left dorsal aI (k = 109; − 33, 21, 4) and bilateral Supplementary Motor 
Cortex (SMA; k = 138; − 8, 11, 53; see Fig. 3a). Additionally, the right 
inferior parietal lobe (right IPL) showed higher activity (k = 264; 55, 
− 35, 53) for positive descriptions compared to negative ones. No cluster 
surpassed the statistical threshold (p>.05) for the opposite contrast. 

During offer processing, the previous presentation of personal in-
formation about the partner [(Offer_Pos & Offer_Neg > Offer_Neu] 
yielded again significant activity involving the bilateral dorsal aI and 
right SMA (k = 23349; − 33, 21, 4). 

To check whether the regions related to personal information were 
the same during the presentation of the valenced adjectives and during 
the presentation of the offer (positive and negative > neutral in both 
cases), we ran a conjunction analysis with the regions significant in both 
contrasts (Nichols et al., 2005). Similar to each contrast individually, we 
observed two clusters: one in the left IFG/aI (k = 93; − 3, 21, 0) and one 
involving bilateral SMA (k = 126; − 5, 18, 53), suggesting that both areas 
increased their activation during the expectation and offer stages (see 
Fig. 3b). 

3.2.1.2. Offer fairness. Fair offers (Fair > Unfair) generated activity (see 
Fig. 4) in the right medial frontal gyrus (mFG) and ACC (k = 171; 6, 39, 
− 14), while the opposite contrast (unfair > fair) did not yield any sig-
nificant clusters (p>.05). Furthermore, we examined neural responses 
depending on whether previous expectations were matched or not by 
the nature (fair vs. unfair) of the offer. Here, congruence (see Fig. 4) 
between expectations and offer (Congruent > Neutral) showed a cluster 
of activity in the right cerebellum (right Crus; k = 153; 17, − 88, − 32). 
Conversely, incongruence (see Fig. 4) between expectations and offer 
(Incongruent > Neutral) yielded activations in the right medial Superior 
Frontal Gyrus (mSFG) and its lateral portion bilaterally (k = 401; 13, 39, 
56), as well as in left IFG (k = 177; − 54, 39, 0). Lastly, regarding general 
conflict effects, a comparison between mismatch (incongruent) vs. 
match (congruent) trials showed clusters of bilateral activity in the IFG/ 
aI (k = 232; − 43, 25, − 11/k = 140; 34, 35, 4; see Fig. 4). 

3.2.2. Multivariate results 

3.2.2.1. Valence of expectations’ classification. Expectations about the 
partners (positive vs. negative information) showed distinct patterns of 
neural activity in a cluster including the left inferior and middle frontal 
gyrus (IFG/MFG) and aI (k = 319; − 46.5, 28, − 32.2), the bilateral 
ventromedial prefrontal cortex (vmPFC) and ACC (k = 483; 6, 21, 
− 19.6), and the bilateral middle cingulate cortex (MCC) and SMA (k =
339; − 4.5, 14, 35; see Fig. 5). 

Although the same comparisons (positive vs. negative) in univariate 
GLM only yielded a significant cluster activation in the IPL for positive 
> negative expectations, we ran a conjunction analysis (Nichols et al., 
2005) to test whether the regions that increased their activation during 
the presentation of the adjectives (positive & negative > neutral) were 
similar to those that contained relevant information about the valence 
(as reflected by multivariate results). For this, we computed the inter-
section between the group maps from both contrasts. Results showed 
two clusters (see Fig. 5): one in the left IFG/aI (k = 56; − 36, 25, 0) and 
one involving the bilateral SMA (k = 69; − 8, 18, 46). 

Moreover, the valence of the partners’ descriptions influenced par-
ticipants’ choices, where they accepted more offers after positive than 
negative descriptions. As explained in the methods section (2.6 

Fig. 2. Acceptance Rates (AR, bars) and reaction times (RT, lines) to fair and 
unfair offers preceded by positive, negative and neutral descriptions of the 
partner (error bars represent S.E.M). 
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Multivariate analyses), information about participants’ responses might 
be employed to decode the valence of partners’ descriptions. To examine 
whether the regions containing relevant information about the valence 
were the same as those representing the participants’ decisions (accept 
vs. reject), we performed a response classification at the offer period and 
ran a conjunction analysis. Here, we observed that only a cluster in the 
bilateral SMA (k = 95; − 1, 7, 48) resulted significant for both classifi-
cation analyses. Additionally, we carried out a cross-classification 
analysis (Kaplan et al., 2015) to examine the overlap between the neu-
ral representations of participants’ choices and the valence of partners’ 
descriptions. In this case, that a classifier trained with response data is 
not able to decode valence category accurately would suggest that the 
neural codes underlying valence and response classifications are 
different and, therefore, that the valence decoding results are not 
explained by participants’ responses. Results from this analysis showed 
that cross-decoding was only possible from bilateral SMA extending to 

left parietal lobe (k = 671; − 1, − 11, 45), as well as from a cluster in left 
cerebellum extending to lingual and fusiform gyri (k = 381; − 18, − 60, 
− 15). This indicates that classification of valence in IFG/aI and 
vmPFC/ACC cannot be explained by the patterns related to participants’ 
responses. 

3.2.2.2. Correlation between decoding accuracy and the bias index. To 
explore how much influence the neural representation of the valence of 
the adjectives had on choices, we correlated the mean decoding accu-
racies (positive vs. negative) for each significant cluster in the MVPA 
with the behavioural bias index for each participant. This analysis 
yielded significant positive correlations between the decoding accuracy 
for the descriptions’ valence and the behavioural bias in all 3 significant 
clusters (see Fig. 6): the left IFG/MFG and aI (r = .42; p = .02), bilateral 
vmPFC/ACC (r = .44; p = .015), and the left MCC/SMA (r = .53; p =
.0038). Hence, the better the activation patterns in these regions 

Fig. 3. a) Univariate results during the expectation period. Scales reflect peaks of significant t-values (p<.05, FWE-corrected for multiple comparisons). b) Time 
course of activation in the IFG/aI (− 3, 21, 0; top) and SMA (− 5, 18, 53; bottom) clusters obtained from the conjunction analysis. From these regions, we extracted the 
signal change values related to the processing of personal information minus the average during the neutral condition, time-locked to the adjective onset. The shaded 
areas show the variable time window during which the offer could appear (5–8 s after the adjective onset) whereas the dotted lines show its average (6.5 after the 
adjective onset). 

Fig. 4. Univariate results for the offer. Scales reflect peaks of significant t-values (p<.05, FWE-corrected for multiple comparisons).  
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discriminated between the valence of the partners’ information, the 
larger the effect of valenced information on subsequent behavioural 
choices. A second correlation control analysis showed that this link was 
not contaminated by participants’ motor responses, since there was no 
correlation between any of the ROIs mean accuracies and general 
acceptance rate per participant (all ps>.39), which supports the speci-
ficity of the link between valenced expectations and choices. 

4. Discussion 

Our study investigated the neural basis of social valenced expecta-
tions during an interpersonal UG. Results revealed that social informa-
tion about other people bias subsequent economic choices, as well as it 

increases activity in the anterior insula and SMA. Furthermore, decoding 
analysis allowed to observe that these areas, together with the vmPFC, 
represent the content of such expectations. Notably, the better this in-
formation is represented in these regions, the more biased are partici-
pants to employ such knowledge when making their economic decisions. 

The UG employed showed a clear behavioural effect of interpersonal 
expectations, where positive descriptions of others led to higher 
acceptance rates compared to negative ones. Additionally, the impact of 
the expectations was reflected on the speed of choices, where people 
needed more time to reject offers after positive (or neutral) expectations. 
This pattern indicates that participants integrate social information in 
their decision-making process, showing a tendency to process offers as 
fairer when the partner is described positively. Further, this data 

Fig. 5. Multivariate results (violet). Different neural patterns for the valence of the adjective (positive vs. negative) during the expectation stage. Scales reflect 
corrected p-values (<0.05). Significant regions in both univariate and multivariate analyses are highlighted in yellow. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Scatter plots showing significant correlations between mean decoding accuracies in each cluster and the behavioural index. IFG: Inferior frontal gyrus. MFG: 
Middle frontal gyrus. ACC: Anterior Cingulate Cortex. MCC: Middle Cingulate Cortex. SMA: Supplementary Motor Area. 
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replicates previous results (Gaertig et al., 2012; Moser et al., 2014; Ruz 
et al., 2011), emphasizing the role of expectations (Sanfey, 2009) and 
valenced morality in decision-making (Barrett and Bliss-Moreau, 2009). 
Overall, the behavioural pattern of choices observed supports the utility 
of the experimental paradigm to induce interpersonal valenced expec-
tations about others that bias subsequent choices made to the same set of 
objective behaviour (offers made by partners). 

Several regions increased their activation when participants held in 
mind social expectations about game partners. This information 
engaged the SMA and the dorsal aI, which were also active at the offer 
stage. These regions have been previously related to preparation pro-
cesses (Brass and von Cramon, 2004), as well as sustained (Dosenbach 
et al., 2008; Palenciano et al., 2019) and transient (Menon and Uddin, 
2010; Sridharan et al., 2008) top-down control, in paradigms where 
participants use cue-related information to perform tasks of different 
nature on subsequent targets. In studies using the UG, these regions have 
been linked to response to unfairness (Gabay et al., 2014). In addition, 
previous work has related aI activation with the rejection of unfair offers 
(Sanfey et al., 2003). In the current context, these areas may be involved 
in using the interpersonal information contained in the words to guide 
or bias the action towards a certain choice, according to the valence of 
the expectation. However, univariate contrasts between the words 
containing positive vs. negative information, in stark contrast with 
behavioural outcomes, showed effects restricted on a cluster in the IPL. 
This region has been related to the simulation of others’ action in shared 
representations (Van Overwalle, 2009), and a part of our cluster it is 
included in the TPJ (e.g., Scholz et al., 2009), which plays a main role in 
ToM (Saxe and Kanwisher, 2003). The increase of activation in this re-
gion for positive expectations could indicate a higher reliance on posi-
tive descriptions by the ToM processes involved in our task. This fits 
with the pattern found in RTs where only positive expectations speeded 
acceptance choices, whereas negative descriptions did not speed re-
jections. Further research will be needed to replicate this imbalance of 
information and to better understand the nature of the underlying brain 
processes. 

Importantly, the use of a multivariate classification analysis (MVPA) 
unveiled the brain regions that contain differential patterns for positive 
vs. negative expectations about the partners. This is especially relevant 
since previous work has indicated how valence differences at a neural 
level are particularly hard to observe (Lindquist et al., 2015). These 
areas included the SMA/MCC, IFG/MPFC and vmPFC/ACC. There was 
no difference in RT between positive and negative conditions (see 
Behavioural data, section 3.1.), which rules out the possibility that the 
classifier was mistakenly discriminating faster vs. slower conditions. 

The relevance of the SMA in social scenarios has been reported 
previously (Chang and Sanfey, 2013). These authors observed a rela-
tionship between the activity in this area and the deviation of previous 
expectations. Moreover, Lindquist et al. (2015) linked this region to the 
unspecific representation of valence. Our conjunction analysis shows 
that part of the SMA increases its activity during the expectation period 
and also shows different patterns depending on the valence of the 
expectation. This data suggests that the SMA has a role in general 
preparation but it also contains specific fine information relevant to the 
task. In addition, we observe partial overlapping activation with the 
response classification, which suggests that this region also contains 
some information about participants’ responses. The MCC, on the other 
hand, has been associated with an increase of the efficiency in 
decision-making, being involved in the anticipation and consequent 
expectations of outcomes in a variety of non-social tasks (Vogt, 2016). 
Further, it has also been related to the prediction and monitoring of 
outcomes in social decisions (Apps et al., 2013), and it may play a 
similar role in our study. 

On the other hand, the patterns of activity in a lateral prefrontal 
cortex cluster (lPFC), including the IFG and MPFC, also discriminated 
the valence of the expectations. Interestingly, these areas were part of a 
large cluster that also showed increased activation during the 

maintenance of social information, as revealed by univariate results. In 
non-social paradigms, the lPFC has been related to working memory 
maintenance (Morgan et al., 2013; Sala et al., 2003) and other forms of 
cognitive control (e.g., Reverberi et al., 2012). The IFG specifically has 
also been associated with the selection of semantic information (Jeff-
eries, 2013; Wagner et al., 2001), and it is also involved in the expec-
tation to perform different non-social tasks employing verbal material 
(e.g., González-García et al., 2017; Sakai and Passingham, 2006). 
Notably, our results extend this role to a social context (see also Fil-
kowski et al., 2016; Thye et al., 2018; Van Overwalle, 2009), where 
verbal information is used to generate positive or negative expectations 
about game partners, by showing that the pattern of activity in this 
frontal region differs depending on the nature of the information used to 
predict the proximal behaviour of others. 

On the other hand, although the vmPFC/ACC did not increase its 
overall activation during the expectation period, it contained patterns 
related to the valence of the predictions. Crucially, this area overlaps 
with the region isolated in the meta-analysis by Lindquist et al. (2015), 
where they linked its activity with a bipolar representation of valence. 
On a broader context, this region is part of the social cognition network, 
associated with mentalizing processes (Koster-Hale and Saxe, 2013; 
Tamir et al., 2016), and behaviour guided by social cues, along with the 
ACC. Previous studies relate the mPFC with predictions about others’ 
desires (Corradi-Dell’Acqua et al., 2015), and priors during valued de-
cisions (Lopez-Persem et al., 2016). Additionally, Van Overwalle (2009) 
linked this region to the integration of personal traits, and it has been 
extensively associated with the representation of intentions as well 
(Haynes et al., 2007). 

The association between a brain region and a given behaviour is 
strengthened when a link can be observed between the fidelity of a 
pattern of activity and the behavioural outcome studied (Naselaris et al., 
2011; Tong and Pratte, 2012). To find this evidence we obtained, for 
each participant, a bias index representing how much the valence of the 
personal information influenced their choices and correlated this index 
with the accuracy of the classifier in disentangling the patterns gener-
ated by positive vs. negative words. We observed a positive correlation 
between these two factors in the three clusters sensitive to the valence of 
expectations. Thus, the better the classifier distinguished between de-
scriptions of different valence, the more people tended to accept offers 
preceded by positive compared to negative descriptions. These results 
strongly suggest that these valenced representations were used to weight 
the posterior acceptance or rejection of the same set of objective offers, 
biasing behaviour. Importantly, additional control correlation analysis 
evidenced that this finding was not contaminated by participants’ motor 
responses. 

We could also observe the effect of expectations by studying the 
brain activity generated by offers that matched or mismatched them, 
that is, fair and unfair offers preceded by descriptions of the same or 
opposing valence. Here we found cerebellum activity when fair offers 
were preceded by positive descriptions and unfair ones followed nega-
tive adjectives. This region is associated with prediction in a variety of 
contexts, such as language (Lesage et al., 2017; Pleger and Timmann, 
2018) and also social cognition (Van Overwalle, Baetens, Mariën and 
Vandekerckhove, 2014), among others. In social scenarios, where peo-
ple frequently anticipate others’ needs or actions, the understanding of 
the role of the cerebellum in predictions is particularly relevant (Sokolov 
et al., 2017). Although previous studies (Berthoz, 2002) found increased 
activity in the cerebellum when predictions (social norms) were 
violated, we observed the opposite. Hence, our data suggest that in the 
current context the cerebellum may signal when predictions are 
matched by social observations. Conversely, when predictions are not 
met, we observed activation in the lPFC, specifically the IFG and aI. In 
this contexts, the lFG has been associated with semantic cueing 
(González-García et al., 2016), semantic control (Jefferies, 2013) and 
emotional regulation during social decisions (Grecucci et al., 2013). 
Conversely, the aI has been linked to responses to unfair offers, which 
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represent a violation of social norms (Corradi-Dell’Acqua et al., 2013). 
This agrees with the incompatibility we observe here between previous 
expectations and actual events. Altogether, this data also supports the 
relevance of expectations when participants face the outcome of an 
interaction. At this point, they may need to suppress the previous in-
formation to act in accordance with the offer. 

Although it was not the main goal of this work, we also examined 
brain responses to the fairness of the offer. While previous work has 
shown activation in areas such as aI, cingulate cortex and mPFC in re-
action to unfair offers (Corradi-Dell’Acqua et al., 2013; Gabay et al., 
2014), we observed higher activation in ACC/mPFC when participants 
faced fair (vs. unfair) offers. In this line, the mPFC has been linked to the 
monitoring of emotional reactions in bargaining scenarios (Corradi--
Dell’Acqua et al., 2013), and its involvement could represent the posi-
tive outcome related to fair offers, in line with previous work associating 
the mPFC with value assessment of outcomes (Amodio and Frith, 2006). 
The ACC, on the other hand, has been related to the proposal of fair 
offers due to strategic motives (Chen et al., 2017), suggesting a role of 
this area in computing reward. This, in turn, would be in line with our 
results of the fairness of the offer, where the ACC could be relevant to 
signal their rewarding outcomes. 

Our study has certain limitations, which should be addressed in 
future investigations. First, the optimal procedure to perform multi-
variate analyses and avoid response-related confounds is to counter-
balance response options for each participant (Todd et al., 2013). In the 
current experiment, however, the association between hand and 
response was counterbalanced at the group but not the individual level. 
Thus, our valence-related classifications could have been affected by the 
response patterns linked to acceptance and rejection choices. To rule this 
out, we performed an additional conjunction analysis, which showed 
that only a small portion of the SMA cluster was common to both con-
trasts. Also, we observed that patterns in part of this region overlapped 
between participants’ decisions and the valence of their expectations. 
These results suggest that the SMA represents both events with similar 
codes, although it could also be the case that findings in this region are 
due to confounds from participants’ responses. In further support of the 
relevance of the representation of the valence in the bias observed in 
decisions, an additional control analysis showed that the performance of 
the classifier for the valence decoding was only related to a specific 
behavioural bias resulting from the valence of the expectation, but not 
with the response itself. Therefore, our data highlight that the fidelity of 
the valence representation in IFG/aI and vmPFC is associated with the 
extent to which the partners’ descriptions modulate participants’ 
decisions. 

Further, it may be argued that the influence of the partners’ moral 
information could be due to alterations in participants’ mood after 
reading these descriptions, rather than to the generation of expectations 
about their likely behaviour. Although we cannot rule out completely 
this possibility, our findings show a specific link between the partici-
pants’ behavioural bias and the neural representation of the partners’ 
social information, which would not be in line with an explanation 
related to general mood fluctuations. Alternatively, following previous 
work on affective priming and conflict (Dignath et al., 2020; Fritz and 
Dreisbach, 2013), adjectives could act as affective primes (Bush et al., 
2018). However, previous results suggest otherwise. Gaertig et al. 
(2012) carried out an experiment without the social cover story to test 
this alternative explanation. Here, the same words failed to trigger 
valence bias in choices. This indicates that, rather than an automatic 
priming effect triggered by the adjectives, it is the association between 
these and the character of the partners which impacted participants’ 
decisions. An additional concern relates to the ecological validity of our 
study, which is limited by the context of fMRI scanning in a single 
location. However, we increased the credibility of the social scenario by 
means of instructions and a cover story, where we recreated an actual 
delayed interaction between participants of different studies, and where 
actual earnings were contingent on the choices made during the game. 

In fact, none of the participants showed signs of susceptibility about the 
underlying nature of the study when informally debriefed at the end of 
the session. Nonetheless, participants could have approached the task in 
various ways, engaging in the social context differently. Thus, a more 
detailed and structured debriefing where this and other points are 
addressed should be included in future studies. Moreover, another step 
forward would be to assess participants’ personality and prosocial ten-
dencies, since individual predispositions can also influence these dy-
namics (Díaz-Gutiérrez et al., 2017). Futures studies could use some 
form of virtual reality during scanning (Mueller et al., 2012) together 
with more complex verbal descriptions of others to examine whether 
similar brain regions represent this content and the way this is struc-
tured, perhaps employing neuroimaging methods with higher ecological 
validity (e.g. Pinti et al., 2018). Additionally, another interesting 
research question would be to find if there is a sort of “common valence 
space” for the two stages of the paradigm. That is, to find out if there is 
shared information underlying the valence of the adjective (positive/-
negative) but also the “pleasantness" of the offer (fair-positive, 
unfair-negative). A future study designed to employ cross-classification 
decoding approaches (Kaplan et al., 2015) between the expectation and 
the evidence game periods with temporally precise methods such as 
electroencephalography could offer valuable information on this 
respect. 
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Sala, J.B., Rämä, P., Courtney, S.M., 2003. Functional topography of a distributed neural 
system for spatial and nonspatial information maintenance in working memory. 
Neuropsychologia 41 (3), 341–356. https://doi.org/10.1016/S0028-3932(02) 
00166-5. 

Sanfey, A.G., 2009. Expectations and social decision-making: biasing effects of prior 
knowledge on Ultimatum responses. Mind Soc. 8 (1), 93–107. https://doi.org/ 
10.1007/s11299-009-0053-6. 

Sanfey, A.G., Rilling, J.K., Aronson, J.A., Nystrom, L.E., Cohen, J.D., 2003. The neural 
basis of economic decision-making in the Ultimatum Game. Science 300, 
1755–1758. https://doi.org/10.1126/science.1082976. 

Saxe, R., Kanwisher, N., 2003. People thinking about thinking peopleThe role of the 
temporo-parietal junction in “theory of mind. Neuroimage 19 (4), 1835–1842. 
https://doi.org/10.1016/S1053-8119(03)00230-1. 

Schneider, W., Eschman, A., Zuccolotto, A., 2002. E-prime User’s Guide. Psychology 
Software Tools Inc, Pittsburgh.  

Scholz, J., Triantafyllou, C., Whitfield-Gabrieli, S., Brown, E.N., Saxe, R., 2009. Distinct 
regions of right temporo-parietal junction are selective for theory of mind and 
exogenous attention. PloS One 4 (3). https://doi.org/10.1371/journal. 
pone.0004869. 

Schwarz, K.A., Pfister, R., Büchel, C., 2016. Rethinking explicit expectations: connecting 
placebos, social cognition, and contextual perception. Trends Cognit. Sci. 20 (6), 
469–480. https://doi.org/10.1016/j.tics.2016.04.001. 

Sokolov, A.A., Miall, R.C., Ivry, R.B., 2017. The cerebellum: adaptive prediction for 
movement and cognition. Trends Cognit. Sci. 21 (5), 313–332. https://doi.org/ 
10.1016/j.tics.2017.02.005. 

Sridharan, D., Levitin, D.J., Menon, V., 2008. A critical role for the right fronto-insular 
cortex in switching between central-executive and default-mode networks. Proc. 
Natl. Acad. Sci. Unit. States Am. 105 (34), 12569–12574. https://doi.org/10.1073/ 
pnas.0800005105. 

Stelzer, J., Chen, Y., Turner, R., 2013. Statistical inference and multiple testing 
correction in classification-based multi-voxel pattern analysis (MVPA): random 
permutations and cluster size control. Neuroimage 65, 69–82. https://doi.org/ 
10.1016/j.neuroimage.2012.09.063. 

Stolier, R.M., Freeman, J.B., 2016. Neural pattern similarity reveals the inherent 
intersection of social categories. Nat. Neurosci. 19 (6), 795–797. https://doi.org/ 
10.1038/nn.4296. 

Stolier, R.M., Freeman, J.B., 2017. A neural mechanism of social categorization. 
J. Neurosci. 37 (23), 5711–5721. https://doi.org/10.1523/JNEUROSCI.3334- 
16.2017. 

Summerfield, C., De Lange, F.P., 2014. Expectation in perceptual decision making: neural 
and computational mechanisms. Nat. Rev. Neurosci. 15 (11), 745–756. https://doi. 
org/10.1038/nrn3838. 

Tamir, D.I., Thornton, M.A., 2018. Modeling the predictive social mind. Trends Cognit. 
Sci. 22 (3), 201–212. https://doi.org/10.1016/j.tics.2017.12.005. 

Tamir, D.I., Thornton, M.A., Contreras, J.M., Mitchell, J.P., 2016. Neural evidence that 
three dimensions organize mental state representation: rationality, social impact, 
and valence. Proc. Natl. Acad. Sci. U.S.A. 113 (1), 194–199. https://doi.org/ 
10.1073/pnas.1511905112. 

Thornton, M.A., Mitchell, J.P., 2017. Theories of person perception predict patterns of 
neural activity during mentalizing. Cerebr. Cortex 1–16. https://doi.org/10.1093/ 
cercor/bhx216. 

Thye, M.D., Murdaugh, D.L., Kana, R.K., 2018. Brain mechanisms underlying reading the 
mind from eyes, voice, and actions. Neuroscience 374, 172–186. https://doi.org/ 
10.1016/j.neuroscience.2018.01.045. 

Todd, M.T., Nystrom, L.E., Cohen, J.D., 2013. Confounds in multivariate pattern analysis: 
theory and rule representation case study. Neuroimage 77, 157–165. https://doi. 
org/10.1016/j.neuroimage.2013.03.039. 

Tong, F., Pratte, M.S., 2012. Decoding patterns of human brain activity. Annu. Rev. 
Psychol. 63 (1), 483–509. https://doi.org/10.1146/annurev-psych-120710-100412. 

Turner, B., 2010. Comparison of Methods for the Use of Pattern Classificaion on Rapid 
Event-Related fMRI Data. Poster session presented at the Annual Meeting of the 
Society for Neuroscience, San Diego, CA.  

Van Overwalle, F., 2009. Social cognition and the brain: a meta-analysis. Hum. Brain 
Mapp. 30 (3), 829–858. https://doi.org/10.1002/hbm.20547. 
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Wagner, A.D., Paré-Blagoev, E.J., Clark, J., Poldrack, R.A., 2001. Recovering meaning: 
left prefrontal cortex guides controlled semantic retrieval. Neuron 31 (2), 329–338. 
https://doi.org/10.1016/S0896-6273(01)00359-2. 

Yeung, N., Sanfey, A.G., 2004. Independent coding of reward magnitude and valence in 
the human brain. J. Neurosci. 24 (28), 6258–6264. https://doi.org/10.1523/ 
JNEUROSCI.4537-03.2004. 

P. Díaz-Gutiérrez et al.                                                                                                                                                                                                                        

https://doi.org/10.1016/j.brainres.2009.08.085
https://doi.org/10.3758/BF03193031
https://doi.org/10.3758/BF03193031
https://doi.org/10.1093/cercor/bhr200
https://doi.org/10.1093/cercor/bhr200
https://doi.org/10.1371/journal.pone.0015762
https://doi.org/10.1371/journal.pone.0015762
https://doi.org/10.1016/j.neuroimage.2010.08.039
https://doi.org/10.1523/JNEUROSCI.3887-05.2006
https://doi.org/10.1146/annurev.neuro.31.060407.125642
https://doi.org/10.1016/S0028-3932(02)00166-5
https://doi.org/10.1016/S0028-3932(02)00166-5
https://doi.org/10.1007/s11299-009-0053-6
https://doi.org/10.1007/s11299-009-0053-6
https://doi.org/10.1126/science.1082976
https://doi.org/10.1016/S1053-8119(03)00230-1
http://refhub.elsevier.com/S0028-3932(20)30257-8/sref76
http://refhub.elsevier.com/S0028-3932(20)30257-8/sref76
https://doi.org/10.1371/journal.pone.0004869
https://doi.org/10.1371/journal.pone.0004869
https://doi.org/10.1016/j.tics.2016.04.001
https://doi.org/10.1016/j.tics.2017.02.005
https://doi.org/10.1016/j.tics.2017.02.005
https://doi.org/10.1073/pnas.0800005105
https://doi.org/10.1073/pnas.0800005105
https://doi.org/10.1016/j.neuroimage.2012.09.063
https://doi.org/10.1016/j.neuroimage.2012.09.063
https://doi.org/10.1038/nn.4296
https://doi.org/10.1038/nn.4296
https://doi.org/10.1523/JNEUROSCI.3334-16.2017
https://doi.org/10.1523/JNEUROSCI.3334-16.2017
https://doi.org/10.1038/nrn3838
https://doi.org/10.1038/nrn3838
https://doi.org/10.1016/j.tics.2017.12.005
https://doi.org/10.1073/pnas.1511905112
https://doi.org/10.1073/pnas.1511905112
https://doi.org/10.1093/cercor/bhx216
https://doi.org/10.1093/cercor/bhx216
https://doi.org/10.1016/j.neuroscience.2018.01.045
https://doi.org/10.1016/j.neuroscience.2018.01.045
https://doi.org/10.1016/j.neuroimage.2013.03.039
https://doi.org/10.1016/j.neuroimage.2013.03.039
https://doi.org/10.1146/annurev-psych-120710-100412
http://refhub.elsevier.com/S0028-3932(20)30257-8/sref91
http://refhub.elsevier.com/S0028-3932(20)30257-8/sref91
http://refhub.elsevier.com/S0028-3932(20)30257-8/sref91
https://doi.org/10.1002/hbm.20547
https://doi.org/10.1016/j.neuroimage.2013.09.033
https://doi.org/10.1016/j.jchemneu.2016.01.010
https://doi.org/10.1016/j.jchemneu.2016.01.010
https://doi.org/10.1016/S0896-6273(01)00359-2
https://doi.org/10.1523/JNEUROSCI.4537-03.2004
https://doi.org/10.1523/JNEUROSCI.4537-03.2004

	Neural representations of social valence bias economic interpersonal choices
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Apparatus and stimuli
	2.3 Task and procedure
	2.4 Image acquisition and preprocessing
	2.5 Univariate analyses
	2.6 Multivariate analyses
	2.7 Relationship between decoding accuracy and choices

	3 Results
	3.1 Behavioural data
	3.1.1 Acceptance rates
	3.1.2 Reaction times

	3.2 Neuroimaging data
	3.2.1 Univariate results
	3.2.1.1 Expectations
	3.2.1.2 Offer fairness

	3.2.2 Multivariate results
	3.2.2.1 Valence of expectations’ classification
	3.2.2.2 Correlation between decoding accuracy and the bias index



	4 Discussion
	CRediT authorship contribution statement
	Acknowledgments
	References


