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A B S T R A C T

Verbal instructions allow humans to acquire and implement complex novel rules in few seconds. A major
question that remains elusive is how the brain represents this information prior to successful task execution. In
this experiment, we studied the brain regions involved in representing categorical stimulus information during
the encoding of novel instructions, their preparation and also their implementation, as well as the relation of the
fidelity of these representations to observable behavior. To do so, we devised a novel instructions paradigm to
delimitate these three stages. Using univariate and multivariate analyses of functional magnetic resonance data,
our study revealed that the semantic content (faces or letters) of complex novel instructions can be decoded
several seconds before the onset of a target, as soon as instructions are encoded. Crucially, the quality of the
information represented in domain-general and category-selective regions correlated with subsequent
behavioral performance. This suggests that the rapid transformation of novel instructions into coherent
behavior is supported by control mechanisms that use available, relevant information about the current rule
prior to its execution. In addition, our results highlight the relation between these control processes and others
such as prospective memory and maintenance of future intentions.

Introduction

The ability to implement verbal instructions allows humans to
translate novel complex rules into behavior in mere seconds. How does
the brain deal with new information in such a fast and efficient way?
According to theoretical models, the path from instructions to overt
behavior can be decomposed in different stages of processing (Bunge,
2004; Sakai, 2008). Initially, the content of the instructions has to be
encoded in the system, employing representations of semantic rules
that link specific stimulus features to concrete behaviors (Crone et al.,
2006; Sakai, 2008). Once the target context (stimuli) appears, instruc-
tions are implemented by performing the appropriate actions according
to the instructed rules. But before that, preparation entails a task set
configuration (Meiran, 1996; Rubinstein et al., 2001). This stage of
processing, understood as the adjustment to relevant task rules in
anticipation of target stimuli (Rogers and Monsell, 1995) is a key
component of complex task execution (Brass and von Cramon, 2002),
and it is thought to be a cognitive state separable from related ones,
such as the mere maintenance of task demands (Cohen-Kdoshay and
Meiran, 2009; Liefooghe et al., 2013, 2012; Muhle-Karbe et al., 2014).

Crucially, the adequate configuration of cognitive resources achieved
during the preparatory period enhances behavioral performance
(Sakai, 2008).

Neuroimaging data suggest that task preparation relies on a
frontoparietal network, which has been related to complex cognitive
control operations (Duncan, 2010). More specifically, when switching
between tasks the Inferior Frontal Junction (IFJ) updates the rule
representation, whereas stimulus-response associations engage the
intraparietal sulcus (IPS; Brass and von Cramon, 2004, 2002). De
Baene and Brass (2014) proposed that the pre-supplementary motor
area (pre-SMA) suppresses actions from previous tasks and enhances
the appropriate response for the new stimulation. Previous studies also
point to a dynamic interplay between the lateral prefrontal cortex
(LPFC) and brain regions linked to category-specific processing (Sakai
and Passingham, 2006, 2003). For instance, when participants prepare
to perform semantic operations, task cues engage areas involved in
effortful semantic processing, such as the left inferior frontal gyrus,
prior to the target onset (e.g. González-García et al., 2016). Some other
studies have also reported category-specific connectivity patterns in
absence of changes in activity (Sakai, 2008). Although preparation
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seems to play even a more important role when we have to implement
novel instructions (Norman and Shallice, 1986), the neural architec-
ture supporting this ability remains unclear.

Novelty brings larger requirements of control processes given the
lack of pre-existing task-rule representations (Cole et al., 2013).
However, in most studies of task preparation and switching, partici-
pants alternate between a small number of highly practiced tasks, and
thus task sets are formed in advance and later retrieved from memory
(Cole et al., 2013). Preparatory processes, however, seem to fulfill
somewhat different demands with new tasks. When we face a novel
situation, retrieval of previous full task sets does not suffice. Rather,
new ones have to be generated from scratch: representations (e.g. of
visual cues) have to be created for each new trial, including sensory,
semantic and goal-related ones. Recent research has coined the term of
Rapid Instructed Task Learning (RITL) to refer to the “ability to rapidly
restructure one's behavior into novel configurations from instructions”
(Cole et al., 2013). To differentiate this type of learning from others,
such as trial-and-error learning, most of the RITL research focuses on
the first time a given task set is presented. This strategy uses several
new instructions together with practiced ones, which allows the
comparison between the retrieval of previously practiced sets and the
actual formation of novel ones. Some studies (Cole et al., 2010; Ruge
and Wolfensteller, 2010) have assessed the implementation of novel
instructions, suggesting a novelty-related gradient within the LPFC in
which there is an anterior-to-posterior shift of activation as task sets
transition from novel to practiced. Regarding preparation for novel
tasks, the frontoparietal network also seems to be involved. For
instance, Hartstra et al. (2011) highlighted the involvement of IFJ
and IPS during the presentation of single words that encoded instruc-
tions. They also revealed the involvement of the dorsal pre-motor and
M1 areas, a result that they interpreted as a correlate of motor imagery
and the creation of memory codes for the instructions. Using also
isolated words, a later study extended these results, revealing that the
inferior frontal sulcus underpins the representation of task sets by
creating a link between the stimulus and the motor response (Hartstra
et al., 2012). Despite this suggestive evidence, these studies did not
explore how the semantic content of the instructions was represented
during their encoding and preparation. This is a crucial aspect, since
relevant information is needed to create an accurate task configuration
prior to task execution, as shown in task-switching. However, it is still
unknown how and where this relevant information is represented
during preparatory stages to support the translation of novel verbal
representations into implemented rules.

Studies assessing the representation of specific information during
stages of processing suggest that multivariate rather than univariate
analysis of functional magnetic resonance images (fMRI) is more
suitable for this matter. For instance, using single words as instruc-
tions, Cole et al. (2011) showed that a classifier could generalize to
novel tasks when trained on practiced tasks with DLPFC fMRI patterns.
Likewise, a classification algorithm was able to decode task sets within
this region while the instructions were on the screen. However, there is
an implicit difficulty to decode relevant preparatory information in
classic RITL paradigms. Since participants have to encode a new
instruction on every trial, it is hard to disentangle the activity specific
to preparatory processes from encoding of the new verbal content of
the instructions (Brass and von Cramon, 2002; Rogers and Monsell,
1995).

We designed a paradigm to isolate preparation from instruction
encoding and later implementation. For this, we pseudorandomly
manipulated the duration of the interval between novel instructions
and novel target grids, and had participants prepare the novel
instructions in only half of the trials. Similar strategies have been used
to isolate the preparation component associated to novel instructions
(Demanet et al., 2016). In addition, we employed complex verbal
instructions rather than drawings or isolated words as used in previous
studies (Cohen-Kdoshay and Meiran, 2009; Liefooghe et al., 2013,

2012). Although instruction implementation can be achieved via non-
linguistic channels, verbal information is the most powerful means to
convey novel instructions (Cole et al., 2013). Previous strategies, such
as presenting novel symbols or images linked to specific responses,
promote concrete stimulus-response pairings and visual imagery,
which reduce the scope of the observations. Also, the instructions
employed in the current study contained abstract rules, which entail
less concrete commands than specific instructions (e.g. “If you see two
squares, press A”) and a larger number of potential perception-action
scenarios (e.g. “If you see two vowels, press A”). Our verbal instructions
posed yet another form of complexity as they allowed the combination
of multiple rules (e.g. “If you see two contiguous green vowels of the
same size, press A”), which is not easily achievable through non-
linguistic instructions or single words.

In addition, our experiment employed a task designed to alleviate
frequent confounds of task novelty and difficulty. As mentioned before,
previous studies employ instructions practiced in advance as a contrast
to novel ones (Cole et al., 2016, 2011; Stocco et al., 2012). However,
this translates into practiced tasks that are easier to implement, since
the mere presentation of the instruction elicits the adequate response,
retrieved from memory, which leads to faster responses and higher
accuracy scores. In our study, in contrast, every trial started with a
novel complex verbal instruction. A subsequent cue indicated whether
a novel or a practiced target grid would appear and prompted
participants either to prepare to implement the previous instruction
or to retrieve a response from memory upon later target presentation
(see Section Design and procedure). This manipulation balanced
demands across tasks and equated performance indexes across novel
and practiced sets. Also, a secondary benefit was the increase in the
number of novel instructions, which increased the power of the design
to differentiate the encoding of instructions referring to different
stimulus categories.

In sum, the main aim in our study was to advance our knowledge
about how the brain uses new complex information to perform novel
tasks. To do so, we used complex, fully grammatical verbal instructions
referring to either faces or letters to assess which areas contained
category-specific information during the encoding, preparation and
implementation of novel rules. We predicted that partially differen-
tiated patterns of regions would be involved in encoding vs. preparing
for a new instruction, and that these would include areas related to
cognitive control. Similarly, we expected that the semantic content of
instructions would be decodable since their encoding, but that more
regions would get involved when participant had to explicitly prepare,
reflecting a finer tuning to relevant task information. In addition, we
hypothesized that the degree of decodability of activity patterns of
different categories would have a relation with observable performance,
which would stress the relevance of these representations for actual
behavior.

Materials and methods

Participants

Twenty-two students from the University of Granada (7 males;
mean age: 23; range: 19–31) took part in the experiment and received
20€ in exchange. To encourage high performance during the task,
participants were informed that the five of them with the highest scores
(in terms of accuracy and reaction times) would receive 5 additional €.
All participants reported normal or corrected-to-normal vision and no
history of neurological disorders, and signed a consent form approved
by the local Ethics Committee.

Apparatus and stimuli

We created an initial pool of 210 different verbal instructions that
referred to either face or letter-related features of grids of stimuli. Face
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features were gender (male, female), emotion (happy, sad), size (large,
small) amount (one, two, three or four faces) and contiguity (two, three
or four contiguous faces). To create similar instructions for letter
features, we equated face gender with type of letter (consonant, vowel)
and face emotion with letter color (red, blue). Size, amount and
contiguity were used in the same manner as in face-related instruc-
tions. Depending on the instruction, participants had to focus on one or
several features of the same stimulus category. Instructions always
used a conditional structure, such as “If there are three contiguous [e.g.
female faces/red vowels] of the same size, press A, if not, press L”. Two
unique grids of 4 faces and 4 letters (one fulfilling the instruction and
the other one not) were created for each of the 210 instructions. Grids
were drawn from a pool of 8 faces (one happy male, one sad male, one
happy female, one sad female; each in large and small sizes) and 8
letters (one blue consonant, one red consonant, one blue vowel, one red
vowel; each in large and small sizes). To equate displays across
categories, we created the equivalent of each grid for the opposite
category, following the equivalences described above (e.g. gender
[male, female]=type [consonant, vowel]).

A preliminary behavioral pilot study (n=14) detected that 17
instructions yielded consistently low accuracies (≤75%), and thus these
were removed from the instruction pool together with their equivalent
counterparts in the opposite category. The final pool contained 176
instructions (88 faces, 88 letters) equated in difficulty (see
Supplementary Table 1).

For the fMRI experiment, a PC running E-Prime 2.0 projected the
stimuli onto a screen located at the back of the scanner. A set of mirrors
mounted on the head coil was used for participants to see the screen.
During the whole experiment, they used the index fingers of their right
and left hand to make speeded discrimination responses to target grids
by pressing one of two buttons on a MRI-compatible button box.

Design and procedure

To create a baseline to compare against novel trials that was
equated in behavioral difficulty (as assessed by speed and accuracy of
responses), the day before scanning participants practiced a set of eight
instructions (half referring to faces and the other half to letters;
extracted randomly without replacement from the instructions pool)
and their associated target grids. This practice session lasted ∼20 min
(8 presentations of each instruction) and was repeated until partici-
pants achieved ≥90% of accuracy. To ensure that participants had
learnt the response to the eight grids, afterwards they were prompted
to answer to the same grids, this time without seeing the associated

instructions in advance. Therefore, by the end of the practice session
participants had learned both grid-response and instruction-grid
associations. This session also repeated until participants achieved
≥90% of accuracy, and lasted ∼15 min (8 repetitions of each grid). If
participants failed to complete the last phase after three repetitions,
they had to repeat the complete learning session again (which
happened to 3 of them). On average, participants practiced each
instruction 20.6 times (SD=6.42), during approximately 43 min.
Before the scanning session (which usually took place the day after
the practice and never more than 9 days apart, with an average interval
of 1.86 days), participants performed a ∼5 min behavioral rehearsal
session in which they again had to respond to the eight grids without
their corresponding instruction. During the entire learning session,
feedback was given after each trial to make participants aware of their
performance and help them improve.

Scanning comprised a total of 160 trials. In each of these, regardless
the type of trial, a novel instruction appeared. The color of the
subsequent fixation cross (blue or green) signaled whether participants
had to follow the instruction (80 trials) and thus prepare to implement
it with a novel grid of stimuli or, alternatively, whether they had to
ignore it (80 trials) and expect one of the eight practiced grids. For
these practiced grids, participants had to respond based on the
knowledge acquired during the learning session (see Fig. 1).

The associations between type of trial (novel, practiced), category
and response options were counterbalanced across participants. The
duration of the fixation cross indicating the type of trial, as well as
inter-trial intervals, were jittered to allow the deconvolution of
instruction- and grid-related signals. The pseudorandom duration of
the preparation interval allowed the disambiguation of this stage from
the encoding and implementation. Each trial comprised the following
events (see Fig. 1): a 2.5 s instruction, a colored fixation cross (mean
6.25 s, range 4–8.5 s), a 2 s grid and an inter-trial interval displaying a
black fixation cross (mean 6.25 s, range 4–8.5 s). On average, a trial
lasted 10.750 s. The total fMRI task lasted 45 min approximately.

Data acquisition

Magnetic resonance images were acquired using a 3 T Siemens Trio
scanner at the Mind, Brain and Behavior Research Center (CIMCYC) in
Granada (Spain). Functional images were obtained with a one-shot
T2*-weighted echo planar imaging (EPI) sequence (time until echo
[TE]=23 milliseconds (ms), flip angle=70 degrees, repetition time [TR]
=2.21 s). Forty descending sagittal slices with a thickness of 2.3 mm
(mm; gap of 20%) covered the entire brain (voxel size of 3×3×3 mm3).

Fig. 1. Behavioral paradigm.
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The event-related experiment was performed in a run consisting of
1240 volumes. In addition, we acquired a standard structural image of
each participant using a high-resolution T1-weighted sequence
(TR=1900 ms; TE=2.38 ms; 1×1 mm2 in-plane resolution and 1 slice
thickness).

We used SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) to preprocess
and analyze the neuroimaging data. The first 4 volumes were discarded
to allow for saturation of the signal. The images were then realigned
and unwarped using a least-squares approach and a six-parameter
(rigid body) spatial transformation to correct for motion artifacts. Then
we used slice timing correction to account for differences in the time of
slice acquisitions. Afterward images were normalized to the standard
EPI template included in SPM8 and spatially smoothed using an 8 mm
full-width at half-maximum isotropic Gaussian kernel. A 128 s high-
pass filter was used to remove low-frequency artifacts.

Univariate analyses

Statistical analysis was performed with a General Linear Model
(GLM) for each participant with corrections for serial autocorrelations
using the AR(1) model. The model included regressors for Encoding
(faces/letters instructions), Preparation (jitter of novel faces/letters
task; jitter of practiced task), and Implementation (novel grid of faces/
letters task; practiced grid faces/letters task). These regressors were
convolved with the standard hemodynamic response function.
Duration and onset vectors for the preparation interval were intro-
duced into the GLM, whereas instructions and grids were modeled as
events with zero duration. Trials with errors and missing responses
were grouped together as separate events with an extended duration for
the whole trial (encompassing instructions, fixation cross and grid).
Contrasts of interest (i.e. Encoding vs. Baseline; Novel preparation vs.
Practiced preparation; Novel implementation vs. Practiced implemen-
tation; Faces vs. Letters encoding; Faces vs. Letters novel preparation;
Faces vs. Letters novel implementation) were obtained for each
participant and then entered into a second-level analysis, where a t-
test (to) was used to contrast conditions. To assess significance of each
contrast at the population level, a non-parametric permutation-based
approach was followed (Eklund et al., 2016), using the Statistical non-
Parametric Mapping toolbox (SnPM13; http://warwick.ac.uk/snpm).
On each permutation, the signs of the individual scores were randomly
flipped and a new t-test was performed. This was repeated 5000 times,
obtaining the true distribution of t-values, to which to was empirically
comparable. Cluster-wise inference with a cluster-defining threshold of
p < 0.001 was later used to find significant clusters (FWE corrected, p
< 0.05) on the resulting map. It is worth noting that on this as well as
on the analyses that follow, results were almost identical to those
obtained using a parametric cluster-wise FWE correction approach
(obtained from an initial uncorrected p < 0.001) as implemented in
SPM12.

After the identification of areas involved in the encoding and
preparation stages, we conducted a conjunction analysis (Nichols
et al., 2005) to look for brain regions shared by the two stages. For
conjunction analyses, we performed one-way ANOVAs using first-level
contrast images of interest, which allowed us to define which clusters
were significantly active both during encoding and preparation. Only
conjunction clusters surviving a MS/CN test (Minimum Statistic
compared to the Conjunction Null; Nichols et al., 2005) are reported.

Multivariate analyses

We employed multivariate pattern analysis (MVPA) to study brain
regions sensitive to different stimulus categories (face vs. letter) during
the encoding, preparation and implementation of novel instructions.
This decoding was performed on the non-normalized and non-
smoothed images. For each participant, we used a Least-Squares
Separate model (LSS; Mumford et al., 2012; Turner et al., 2012) to

reduce collinearity between the BOLD signal of consecutive events
(Abdulrahman and Henson, 2016). Following this method, on each
trial we fitted the standard hemodynamic response function to two
regressors: (1) one of the events of the trial (e.g. novel grid of faces) and
(2) the rest of events and trials. The output of this model was one beta
image per event. To maximize the independence of training and test
sets (Pereira et al., 2009), the total amount of betas obtained with the
LSS model was split in 8 temporally distant chunks, each of which
contained 5 betas per event of interest. For instance, for a given event
(e.g. novel grid of faces), we grouped together the five betas closest in
time (Turner et al., 2012). It is important to note that although these
events were not always consecutive, since the different conditions were
randomly interleaved, each chunk contained the trials closest in time.
On average, each of these chunks comprised 340 s, being the average
separation of train and test sets 510 s, and the distance between the
two closest chunks 170 s.

To avoid biases in the selection of regions of interest (Kriegeskorte
et al., 2009) we employed a searchlight approach (Kriegeskorte et al.,
2006) across the whole brain. We used The Decoding Toolbox (Hebart
et al., 2015) to create a spherical cluster of 4-voxel radius around a
given voxel V1, containing C1…N voxels. In order to cross-validate the
performance of the decoder, accuracy was estimated following a leave-
one-out scheme, with each chunk acting as test set once (Pereira et al.,
2009). On each fold, a linear support vector machine (C=1) was trained
to classify the patterns of each category in 7 of the 8 chunks (training
set). Then, the algorithm's decoding accuracy was tested in the
remaining chunk (test set). The averaged accuracy (see Results section)
revealed the algorithm's ability to classify spatial patterns of each
category in the cluster centered in V1. This procedure was repeated for
V2…N in each participant and for each event (encoding, novel prepara-
tion and novel implementation). The resulting accuracy maps for each
participant and event were then normalized to a standard EPI image
and smoothed with a 3-mm Gaussian kernel. The smoothed images
were entered in a second-level analysis. Statistical correction was
performed using the non-parametric approach described in the GLM
section. The surviving clusters localized brain areas in which the
algorithm's accuracy was above chance, that is, areas in which the
spatial patterns for faces and letters were significantly different.

Correlations between decoding accuracies and behavioral indices

To test the behavioral relevance of the decoding results, we
conducted a correlation analysis between individual behavioral indices
(average reaction times [RTs] and accuracy on novel instruction trials)
and decoding accuracies from significant clusters in the searchlight,
using a permutation approach to correct for multiple comparisons
(Groppe et al., 2011). For a given comparison between the behavioral
index and a significant cluster across participants, we first calculated a
correlation index, robserved. We then shuffled participants' scores within
one of the variables and performed the correlation test again. We
carried out this step 10,000 times for each comparison, obtaining a null
distribution of random rN values with the null hypothesis that the two
variables were not correlated (i.e. no relationship between the decoding
accuracy of a given cluster and the behavioral index). To prove this
hypothesis wrong, the robserved should be greater than the 95% of rN.
Only correlations with p-values smaller than 0.05 are reported.

In addition, to rule out the potential confound of RT-related
variance in the hemodynamic response, a control analysis was per-
formed. Here, we estimated the betas for decoding again, but regres-
sing out the specific RT of the trial to which the event belonged. We
then performed the decoding with the new betas and the correlation
between the decoder accuracy and behavioral measures. This approach
yielded significant correlations in the same ROIs revealed by the
original analysis.
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Results

Behavioral

Differences between novel and practiced trials were not significant
(F < 1 for accuracy scores and F=1.33, p=.26 for RTs). No significant
differences were found between faces and letters for accuracy scores (F
< 1), whereas there was a marginally significant effect for RTs (F=4.12,
p=.06). These were nominally longer for faces (M=1109.27 ms;
SEM=24.73 ms) than for letters (M=1067.42 ms; SEM=25.77 ms).
Additionally, there were no significant interactions (all ps > .1).

Univariate

We first looked for activity across categories in novel trials, along
the three temporal events of interest (encoding, preparation and
implementation of instructions; see Fig. 1). The GLM during encoding
(see Fig. 2) yielded significant clusters of activity (Instructions vs.
baseline) in the ventral rostral prefrontal cortex (RPFC; x, y, z MNI
coordinates of peak voxel: 2, 54, 0; k (cluster size)=91 voxels), superior
medial frontal gyrus (MFG; 12, 45, 28; k=147), bilateral inferior frontal
gyrus near the IFJ (42, −2, 24; k=138; −34, 14, 20; k=112), pre-SMA
(−6, 0, 64; k=520), left premotor cortex (PMC; −48, −2, 36; k=519),
left middle temporal gyrus (MTG; −54, −36, 2; k=480), right and left
precuneus (28, −38, 22; k=27; −28, −54, 14, k=55), bilateral visual
association areas (20, −94, −2; k=99; −16, −94, −8; k=123) and
cerebellum (0, −58, −32; k=289).

During preparation, the contrast of novel against practiced trials

showed a different pattern of activations. Preparing to perform a novel
instruction engaged the left inferior frontal gyrus (−44, 22, 32; k=331),
pre-SMA (−6, 2, 62; k=733), left PMC (−44, 0, 42; k=900) and the left
inferior parietal lobe, near the IPS (−28, −52, 38; k=206). The opposite
contrast revealed the strong involvement of default mode network
(DMN) regions, including RPFC (0, 44, 22; k=3570), posterior
cingulate cortex (PCC) (−4, −60, 22; k=3281), and left (−48, −62, 22;
k=764) and right angular gyrus (60, −52, 34; k=830).

During the implementation of instructions, responses to novel grids
(vs. practiced ones) revealed the activation of the ventrolateral
prefrontal cortex bilaterally (48, 42, −16; k=74; −46, 28, −12;
k=136), bilateral dorsolateral prefrontal cortex, including the IFJ,
(50, 15, 16; k=643; −50, 20, 20; k=325), the right inferior parietal
lobe (32, −52, 48; k=799), left MTG (−60, −52, 2; k=364) and the
bilateral fusiform gyrus (34, −58, −10; k=210; −34, −62, −10; k=131).
The opposite contrast yielded the activation of part of the DMN,
namely, the RPFC (−2, 56, 6; k=536) and precuneus (−6, −48, 12;
k=783).

However, no clusters survived the statistical threshold when con-
trasting faces vs. letters during encoding and preparation for novel
trials. During implementation, only a cluster located in visual areas
near BA18 (25, −92, −2; k=136) was more active for face than for letter
grids.

Conjunction analysis

A one-way ANOVA with both the encoding and preparation
regressors revealed a significant cluster involving the left inferior

Fig. 2. Univariate results. GLM results for the encoding (novel instruction vs. baseline), preparation (follow instructions vs. ignore instructions) and implementation (novel grid vs.
practiced grid). Blue colors indicate significant clusters for novel instructions, whereas green represents activity for the practiced condition. Scales reflect peaks of t-values.
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frontal gyrus (−42, 16, 24) and PMC (−40, −2, 44), and an additional
cluster in the pre-SMA (−4, 2, 64). These results suggest that these
three regions were active during both encoding and preparation of
novel instructions. According to this results, the IPS seems to be the
only region active exclusively during the preparation stage. To confirm
the absence of IPS involvement during instruction encoding, we
performed a region of interest-based comparison of instructions vs.
baseline for the IPS cluster drawn from the preparation contrast. This
did not yield significant results even after lowering the threshold at
uncorrected p < .1.

Multivariate

While the instructions were on the screen, several regions showed
differentiated spatial patterns of activation for encoding letter vs. face-
related verbal instructions (see Fig. 3), including the ventral RPFC (−2,
58, −6; k=711; 54%), superior MFG (−2, 56, 28; k=546; 53.5%), left
superior frontal gyrus (−24, 0, 56; k=135; 53.2%), left (−28, 32, 32;
k=720; 54.1%) and right inferior frontal gyrus (48, 8, 12; k=41; 53%),
right thalamus (16, −16, 6; k=352; 54%), left postcentral gyrus (−32,
−38, 58; k=174; 53.3%), left superior parietal gyrus (−26, −42, 54;
k=477; 54%), left angular gyrus (−36, −66, 26; k=65; 53.4%), left
fusiform gyrus (−46, −58, −6; k=101; 53.4%), right lingual gyrus (18,
−82, −10; k=388; 54.1%) and right cerebellum (28, −64, −42; k=567;
53.4%).

Preparation to perform either a letter or a face novel task elicited
separable spatial patterns of activity in the ventral RPFC (2, 58, −2;

k=1244; 57.3%), a large cluster in the left dorsolateral prefrontal cortex
including the IFJ (−30, 26, 50; k=2754; 56.2%), right inferior frontal
gyrus (48, 10, 24; k=2191; 56%), left parahippocampal gyrus (−24,
−14, −16; k=639; 55.5%), precuneus (−6, −44, 26; k=2953; 56.5%),
right angular gyrus (52, −58, 14; k=351; 55.3%), left fusiform gyrus
(−34, −52, −18; k=936; 57.5%), and right (46, −76, 8; k=1315; 57.1%)
and left (−46, −78, −12; k=560; 56%) lateral occipital complex (LOC;
see Fig. 3).

A conjunction analysis (Nichols et al., 2005) of the encoding and
preparation stages revealed that the RPFC (0, 60, −2), left dorsolateral
prefrontal cortex (−44, 24, 32), right inferior frontal (48, 8, 18), left
superior parietal (−34, −76, 50) and left fusiform gyri (−50, −56, 10)
represented relevant information in both stages of instructions proces-
sing.

Last, the stimulus category of novel tasks during implementation
was encoded in the RPFC (6, 50, −4; k=545; 59%), superior frontal
gyrus (18, 48, 52, k=343; 52.69%), right ventrolateral (42, 30, −16;
k=261; 58.4%) and left dorsolateral prefrontal cortex (−46, 28, 24;
k=196; 55.5%), anterior cingulate cortex (−8, 24, 24; k=186; 55.8%),
right MTG (64, −10, −22, k=193; 55.5%), precuneus (−4, −64, 44;
k=1885; 52.88%) and bilateral inferior parietal lobe (36, −50, 28;
k=169; 55%; and −32, −56, 36; k=407; 56.4%, respectively).

Correlations between decoding accuracies and behavioral indices

We introduced the decoding accuracies of the peaks within sig-
nificant clusters of the MVPA results and the average RTs and accuracy

Fig. 3. Multivariate results. Differentiated spatial patterns for stimulus target categories (faces vs. letters) during encoding, preparation and implementation of novel instructions.
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scores per participant into a correlation analyses. After correcting for
multiple comparisons (see Section Correlations between decoding
accuracies and behavior indices), this analysis revealed a significant
negative correlation between the decoding of the instruction category
(faces vs. letters) in the right lingual gyrus during the encoding period
and RT (r=−.44, p=.02; see Fig. 4). During preparation for novel trials,
RT negatively correlated with the decoding of the category in the left
fusiform gyrus (r=−.54, p=.005). Moreover, during this stage response
accuracy positively correlated with the decoding of the category in the
precuneus (r=.37, p=.04), right angular gyrus (r=.55, p=.005), and
right (r=.46 p=.02) and left (r=.42 p=.02) LOC. Regarding the
implementation stage, RT negatively correlated with the decoding
accuracy in the RPFC (r=−.38, p=.04), the right ventrolateral pre-
frontal cortex (r=−.40, p=.03) and the left IPS (r=−.38, p=.04).

Discussion

In the present study, we assessed how the brain encodes the content
of information conveyed by complex novel instructions. Using multi-
variate analysis, we have shown for the first time that the content of
complex verbal instructions can be decoded during the encoding,
preparation and implementation phases of novel tasks. Moreover, the
decodability of category-specific information in high-order and selec-
tive processing brain regions during these stages has an impact on
subsequent behavior.

As expected, our paradigm equated demands between novel and
practiced tasks, as shown by behavioral measures, ruling out difficulty
confounds. Moreover, performance was similar for faces and letters
trials. Although we found a close to significance trend in RTs, a control
analysis (see Section Correlations between decoding accuracies and
behavior indices) confirmed that our decoding results, as well as the
correlations of decoding accuracies with behavioral variables, were not
affected by this speed of responses. The design of the paradigm also
facilitated the separation of encoding, preparation and implementation
stages. During the presentation of the verbal instructions on the screen,
participants were asked to encode their content, which included the

perceptual category of the stimuli (faces vs. letters) that the instruc-
tions referred to. Crucially, at this stage, they did not know whether
they would be required to later implement these instructions, which
discouraged explicit preparation during this first, encoding period. The
color of the subsequent fixation point carried this information, and in
half of the trials participants had to prepare to perform the instruction
just encoded, which would be implemented once the target grid
appeared. On the other half of the trials, the color of the fixation point
indicated that a practiced grid would appear and prompted participants
to disregard the new rule and answer based on what they had learned
during the practice session. This manipulation allowed us to study a
component of explicit preparation, as well as differentiate it from the
encoding of the verbal content, as discussed below. It is important to
highlight that these instructions were complex abstract sentences, fully
grammatical, rather than isolated words or pictures. Also, they
prepared to respond to complex and variable target grids rather than
to isolated stimuli. Hence, the results observed are hard to explain in
terms of perceptual imagery.

Univariate results showed that encoding novel instructions engaged
brain regions associated to instructed behavior, such as the IFJ, the
pre-SMA and the PMC, which were also active during preparation. This
suggests that even when participants do not know if they will be
required to implement an instruction, its mere reading activates a new
task set. This could reflect an automatic encoding of verbal instructions
(Liefooghe et al., 2012) or, alternatively, a planned strategy of
participants, by which they would willingly encode the new task set
and decide whether to prepare or discard it later on. Either way, our
results show larger involvement of the IPS during the preparatory stage
compared to the encoding of instructions. This is in line with experi-
mental models of executive control that propose that the activation of
action-related codes occurs after completion of the task goal update
(Rubinstein et al., 2001) and with empirical data that show the
transmission of top-down representations from prefrontal to parietal
neurons (Crowe et al., 2013, but see Bode and Haynes, 2009, for an
alternative claim). Despite other regions related to action processing
were active during the encoding phase, these have been previously

Fig. 4. Correlations between decoding and behavior. Scatter plots of significant correlations (corrected at p < .05) between decoding accuracies and behavioral indices of novel tasks.
Initials stand for Fusiform Gyrus (FG), lateral occipital complex (LOC), ventrolateral prefrontal cortex (VPFC), RPFC (rostral prefrontal cortex) and intraparietal sulcus (IPS).

C. González-García et al. NeuroImage 148 (2017) 264–273

270



related to the suppression of previous task sets actions and the
establishment of appropriate motor codes (De Baene and Brass,
2014; Hikosaka and Isoda, 2010). In general, our univariate results
support the idea that instructions can foster the creation of S-R
associations in a rather automatic manner (Liefooghe et al., 2012),
but still a greater degree of preparation is needed for them to elicit
action codes (Liefooghe et al., 2013; Meiran et al., 2012; Wenke et al.,
2009). Similarly, Liefooghe et al. (2013) suggest that verbal instruc-
tions can be encoded in a declarative or a procedural format. According
to these authors, only when the instruction has to be enacted in the
future the declarative information is translated into an “action-based
format”. Wenke et al. (2009) propose that this translation entails the
activation and binding of relevant features, which would take place
during preparatory stages in our study. Likewise, Muhle-Karbe et al.
(2014) used transcranial magnetic stimulation to show that the late
disruption of IPS activity hindered the translation of abstract rules into
specific motor commands. Hence, our results highlight the involvement
of the IPS in binding stimulus and action features (Hartstra et al.,
2012) and suggest a key role of this region while preparing to perform
novel tasks. Last, during implementation, even with equated behavioral
performance between novel and practiced trials, we found increased
activation in lateral prefrontal and parietal cortices linked to novel
targets. This result stresses the relevance of these regions in novelty
processing, and not merely in more difficult contexts.

Univariate analyses, however, were not sensitive to the content of
novel instructions. This lack of univariate sensitivity prior to target
appearance is not uncommon in the literature (Sakai, 2008).
Multivariate analyses, on the other hand, were more sensitive.
During the encoding stage, content information could be decoded from
high-order areas such as the IFJ, angular gyrus and the RPFC, as well
as regions related to letter and word processing, such as the lingual
(Borowsky et al., 2007; Leshikar et al., 2012; Vinckier et al., 2007) and
fusiform gyri (Harris et al., 2016; McCandliss et al., 2003; Roberts
et al., 2013). Our results show that these regions, which previous
results link to lexical-semantic processing of sentences (e.g. Ye et al.,
2011), are involved in encoding the semantic content of novel instruc-
tions. Crucially, prior to target onset, the content of instructions could
also be decoded from category-selective regions, such as the fusiform
gyrus or lateral occipital complex, key hubs for object processing (Eger
et al., 2008a, 2008b; Grill-Spector et al., 2001). These results are
coherent with the idea that prospective cognitive control processes
engage not only higher-order, frontal areas but also specific processing
regions involved in forthcoming stimulation (González-García et al.,
2016; Sakai and Passingham, 2003). Previous studies that also
reported results on the same line during preparatory stages (Muhle-
Karbe et al., 2016) employed images of drawings to instruct new rules,
which most likely engaged subsequent mental imagery retrieval of
specific perceptual material. Our design, in contrast, employed complex
verbal instructions composed of words and with no pictures, and
therefore the information represented in perceptual regions had to be
activated by the semantic content of the instructions per se, rather than
the perceptual processing of images. Last, preparation also engaged a
set of regions that has been previously related to episodic retrieval and
recombination of related past events, such as the RPFC, PCC, para-
hippocampal cortex and angular gyrus. Interestingly, some of these
regions are part of the DMN. We will return to this point later on the
Discussion.

An important finding of the present study is the observed link
between the quality of the representations during different stages of
novel instruction processing and behavior. This relationship between
decoding efficiency in novel tasks and behavior has been reported in
previous studies. For instance, Etzel et al. (2015) revealed an increase
in the quality of rule representations in the brain when participants
received monetary incentives. Similarly, Cole et al. (2016) showed that
task representations within the DLPFC are behaviorally relevant in the
implementation of novel tasks, since the accuracy of the decoder

increased during correct in comparison with error trials. Results from
the current experiment show that the discriminability of the perceptual
categories referred to during the encoding and preparation of novel
instructions also influence the efficiency of posterior behavioral re-
sponses. Interestingly, while during encoding and preparation there
were significant correlations between behavior and decoding in some
brain regions related to selective processing of objects, such as the
lingual gyrus, fusiform gyrus and lateral occipital complex, during
implementation these correlations were found in frontoparietal areas
involved in cognitive control. Previous studies suggest that the IFJ
drives category-specific regions involved in feature-based attention
(Baldauf and Desimone, 2014). In this line, we hypothesize that before
target onset, the updating of the task rule in the IFJ (Brass and von
Cramon, 2004, 2002, Hartstra et al., 2012, 2011), replicated by our
univariate analysis, is followed by the tuning of object processing areas
such as the fusiform gyrus and the lateral occipital complex, as well as
areas involved in episodic retrieval and recombination of past events
(Lundstrom et al., 2005; Wagner et al., 2005). This tuning would
enhance the integration of patterns of similar instructions and separa-
tion of irrelevant ones, which could explain the reported impact on
subsequent behavior. During the implementation of the rule, this
simultaneous pattern integration and separation would have the largest
effect on cognitive control areas (Schlichting and Preston, 2015).
Interestingly, decoding accuracy correlated with RT in some areas
and with response accuracy in other areas, but not with both indexes. It
is also noticeable that correlations with response accuracy were only
found during preparation, whereas significant correlations with RT
were present during the three phases. This set of results is however
puzzling as previous literature did not led us to predict such differ-
ences, which would be interesting to explore in future studies.

Our multivariate results are coherent with the existence of a
compositional mechanism underlying the ability to follow novel
instructions to implement new tasks (Cole et al., 2013). This notion
resonates with the constructive episodic simulation hypothesis, pro-
posed in the field of prospective memory. This hypothesis predicts that
the simulation of novel future events relies on a flexible recombination
of small details of past events (Madore et al., 2014; Schacter and Addis,
2009; Szpunar et al., 2014), which is in line with the idea that
instructed learning takes advantage of working memory resources to
support “rapid updating, composionality, and combinatorics of the
representations within the task sets” (Cole et al., 2013). The recombi-
nation of past events recruits different brain areas, including not only
the prefrontal cortex, but also the RPFC, lateral temporal and
temporopolar cortex, hippocampus, parahippocampal cortex, lateral
parietal and PCC (Schacter and Addis, 2009). Some of these areas have
a direct relation with behavior during constructive simulation of novel
future events, suggesting their important role in our task and para-
digms alike. Accordingly, some authors have proposed that rule and
motor representations of novel instructions might entail mental
simulation (Brass et al., 2009). Similar ideas have been suggested in
the study of goal setting and intentions. Locke and Latham (2002)
proposed that, when confronted with new stimulation, people retrieve a
repertoire of skills used in similar contexts and apply them to attain a
novel goal. Moreover, Lau et al. (2004) revealed that attending to the
intention to perform a motor action involved brain regions closely
related to novel instruction processing, such as the pre-SMA and the
IPS. Several prospective memory studies assessing the correlates of
future intentions have shown the involvement of brain areas recruited
by our task, mainly the ventral RPFC (Gilbert, 2011; Landsiedel and
Gilbert, 2015; Momennejad and Haynes, 2013, 2012). A related
striking finding of the current dataset is the encoding of semantic
information in DMN regions. These results hardly reflect mind
wandering, since participants had to actively retrieve the response to
the given target, or some sort of processing of social information, since
the required responses were based on perceptual rather than social
features. Although the role of these regions in task setting is not clear,
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one possibility is that these areas are involved in the representation of
the semantic content of internal speech and conscious thought (Huth
et al., 2016). Accordingly, previous studies have highlighted the
involvement of the DMN when large changes of the cognitive context
take place (Crittenden et al., 2015), which potentially require prospec-
tive memory and active intentions. Also demanding prospective
memory is the coding of task goals, which has been related to the
frontal node of the DMN (Haynes et al., 2007) as well. Our results thus
suggest that novel instruction processing is supported by some of these
processes (such as internal speech, major revisions of cognitive context,
recombination of past events, simulations of future events, encoding of
intentions and attention to these). More research is needed to delimit
the specific role of each of these processes in the implementation of
instructions.

Conclusions

In sum, our results reveal that category-specific information of
complex verbal sentences instructing novel tasks can be decoded from
several brain regions. Moreover, we show for the first time that this
information can be decoded starting from the encoding of verbal
information in perceptual and semantic-related brain areas. Future
research should address how the specific neural representation of the
content of instructions varies across this large set of areas during
different stages, as well as the associated pattern of connectivity.
Moreover, future studies should aim at assessing different aspects of
instructions, such as the level of compositionality of rules, abstraction,
and relationships between concepts. This would provide useful insight
about how specific semantic information is encoded in the brain (Huth
et al., 2016). A further important issue to be resolved is how different
cognitive control components, namely the maintenance of an overall
task-set and adaptive task sets initiated on each trial, interact when we
follow complex verbal instructions.
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